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Abstract In this paper, the modified couple stress-based strain gradient theory is used to provide a unified
nonlinear model of the quasistatic and dynamic behavior of an electrostatic microelectromechanical systems
microbeam capacitive switch of the Euler–Bernoulli type. Our model not only accounts for the contact between
the microbeam and the dielectric substrate using nonlinear springs and dampers, but also accounts for the sys-
tem size by introducing an internal material length scale parameter. In view of the size of the microbeam and
electrostatic gaps involved, Casimir and Van der Waals forces, damping force due to the squeeze membrane
effect and electrostatic force with first-order fringing field effects were accounted for in our model. The result-
ing nonlinear system of PDEs was expanded into a coupled system using series expansion and integrated into
ODEs using weighted residuals of the Galerkin type. To overcome the difficulties associated with the determi-
nation of the contact length, the Heaviside function for deflection was replaced with a Heaviside function for
the contact length, and an iterative procedure was adopted to determine the contact length. To obtain the time
variation of the microbeam, the dynamic system of equations was solved using Newmark’s integration scheme.
The outcome of our work shows the dependence of the pull-in voltage upon the inertia force, slenderness ratios
of the microbeam, the electrostatic gap and the initial boundary conditions of the switch. In addition, we were
also able to provide the full history of the microbeam past the pull-in threshold.

1 Introduction

Research on microelectromechanical systems (MEMS) has seen remarkable growth in the last three decades,
stimulated both by their interesting physical properties and by their attractive applications potential. One of
those appealing MEMS applications are radio frequency (RF) switches [1], which holds promise for replacing
conventional solid-state switches for RF or microwave applications. RF-MEMS switches have lower insertion
loss and higher isolation than solid-state switches, which are critical requirements for the next generation of
communication systems. MEMS switches have the potential to replace PIN diodes, which are now widely
used in current communication systems and can also be used in devices and systems for medical and military
applications. For instance, the insertion loss of a RF-MEMS switch is only 0.05–0.2 dB at frequencies ranging
from 1 to 100 GHz; this is in contrast to 0.3–1.2 dB for PIN diodes and 0.4–2.5 dB for FET switches in the same
frequency regime. RF-MEMS have numerous benefits and applications that are extensively reviewed in [2].
RF-MEMS switches are now available in the market place. For RADAR applications, for instance, approx-
imately 10,000 time-delay circuits are required, bringing the total number of RF switches to approximately
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1/2 million [3]. Several hurdles remain unresolved and require the attention of the research community so
as to ensure the reliability of RF-MEMS switches and turn them into commercially viable products. Indeed,
long-term reliability is one of the major concerns in the use of RF-MEMS switches [4]. The failure modes
of the microswitch have been identified to be either resistance increase with cycling leading to degraded per-
formance or stiction which results in a fail-to-open malfunction. Another hurdle is the inability to obtain a
sufficiently high switching speed at low actuation voltages with less bouncing. In fact, the true underlying
mechanisms responsible for failures of the MEMS switches are not yet known or well understood because of
the complexities involved in contact during their operation. In view of the fact that the structural dynamics of
these microswitches can be a determining factor for the desired switching speed and pull-in contact history,
their mechanical characterization is becoming an integral part of MEMS design and development.

A large body of work has been lately dedicated to the dynamic modeling of MEMS up to the pull-in;
see, e.g., Refs. [5–7]. Gupta et al. [5] conducted experiments and simulations on the transient behavior of
a microbeam driven by a dc voltage at varying ramp-rates. Nielson and Barbastathis [6], using a lumped-
mass model of a parallel-plate actuator, found that pull-in occurs at half the electrostatic gap. The associ-
ated bifurcation was assumed to be the dynamic pull-in where the voltage was only 91.1 % of the static
pull-in voltage. A similar conclusion was drawn by Fargas-Marquès and Shkel [8] based on a lumped-mass
model, which was later verified experimentally in [9]. Elata and Bamberger [10] generated a stagnation
curve that characterizes all those deflection states where an applied voltage can bring the microbeam to rest.
Nayfeh et al. [7] generated frequency–response curves describing the resonant response of a clamped–clamped
electrostatic microbeam. Modeling, analysis and experimental studies of the nonlinear dynamic behavior of
MEMS devices have recently been reported in [11–14] and NEMS [15]. Most models concerning the dynam-
ics of the microswitch concentrate only on certain aspects of the switch, such as the squeeze-film damping
effect. For instance, Steeneken et al. [16] investigated the dynamics and squeeze-film damping of a capaci-
tive RF-MEMS switch. Massad et al. [17] studied the dynamic behavior of a MEMS switch using the finite
element method in which they coupled the switch dynamics with the electrostatic actuation. McCarthy et al.
[18] presented a one-dimensional dynamic finite difference model, based on beam theory, which included
squeeze-film damping and a linear contact spring to simulate the dynamics of an ohmic contact RF-MEMS
switch both prior to and postcontact.

It has been experimentally observed that RF-MEMS switches oscillate a few times prior to making perma-
nent contact with the fixed electrode [16–18]. This is due to the stored elastic energy in the microbeam. The
existence of these bouncing increases the effective closing time of the switch. Meanwhile, the contact surface
between the switch and the substrate may be damaged by a large impact force which can be much larger
than the quasistatic contact force. This instantaneous high impact force may induce local hardening or pitting
of contacting elements at the contact region. In addition, bouncing may result in material transfer or contact
welding [19], which are not desirable for high-reliability switches. This behavior suggests that the dynamics
of the switch is a significant factor in dictating the long-term performance of the switch. Decuzzi et al. [20,21]
developed a model based on Euler–Bernoulli theory to study the bouncing dynamics of a resistive switch. They
included van der Waals’ force and a linear spring to represent the respective attractive and repulsive forces
between the contact tip and the fixed electrode. Gee et al. [22] presented a dynamic model and examined the
effect of the dynamics of the switch on its opening time. In that model, they used a fourth-order beam deflection
equation and included the adhesion force due to both van der Waals’ type forces and metal-to-metal bonds.
Czaplewski et al. [23] used a dual pulse method to achieve a soft landing of the microswitch and presented
the dynamic results of a RF-MEMS switch. However, they ignored the mechanical contact and squeeze-film
damping effects.

Stiction failures are now posing another significant challenge to the commercial deployment of RF-MEMS
switches. The prevalence of these failures has undermined the reliability of MEMS switches. In these fail-
ures, the switch structure deforms upon contact with the substrate in response to an actuation voltage beyond
the pull-in threshold. When the actuation signal is removed, the switch fails to recover its initial equilibrium
position. This is due to the surface forces between the switch and the substrate. Savkar and Murphy [24,25]
and Savkar et al. [26] proposed a vibratory release mechanism to prevent microbeam stiction where an AC
voltage, tuned to a resonance frequency of the microbeam, is applied to release the microbeam. Gorthi et al.
[27] studied the pull-in behavior of cantilever microbeams past the pull-in threshold. Models of MEMS past
pull-in are useful in analyzing MEMS impact actuators, such as that proposed by Bienstman et al. [28].

Liu et al. [29] found that when the initial gap is small, the Casimir and Van der Waals forces become
comparable with the electrostatic force and may therefore significantly influence the dynamics of the micro-
beam. However, lacking an internal material length scale parameter, classical microbeam models presented
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in the above-mentioned works cannot be used to interpret this micro-/nanostructure-dependent size effect.
Therefore, it is necessary to extend these models using higher order (nonlocal) continuum theories [30] such as
the one discussed in [31] to account for the length scale. Considering the difficulties in determining the struc-
ture-related length scale parameters [32,33], nonlocal models involving only one additional material length
scale parameter, which can account for the approximate nature of beam theories and justify the paradoxes in
nonlocal microbeam model [34], are desirable. A modified couple stress theory based on strain gradient has
recently been proposed by Yang et al. [35], where the couple stress tensor is symmetric and only one internal
material length scale parameter is introduced. Based on this new theory, new Euler–Bernoulli and Timoshenko
beam models have been introduced by Park and Gao [36] and Ma et al. [37], respectively. Recently, some
size-dependent phenomena in microstructure [38] and nanostructure [39,40] have successfully been explained
using the above models. Noteworthy is the fact that research on modeling the behavior of MEMS past pull-in
is relatively scarce.

In spite of the above excellent contributions, little work has been conducted to develop a comprehensive
model to accurately predict the dynamic behavior of a microswitch. In this work, we develop such a com-
prehensive model which covers the important aspects pertaining to the quasistatic and dynamic behavior of a
microswitch. In our current model, a modified couple stress theory based on strain gradients is employed to
account for the size effect of the microbeam. The model also accounts for the nonlinear contact force of the
microbeam. In addition, a mathematical model involving Van der Waals force, Casimir force and squeeze-film
damping effect is developed to study the static and dynamic behavior of the RF-MEMS switch. In the numer-
ical simulations, the microscopic size of the beam, its slenderness ratio, and the electrostatic gap on the static
pull-in voltage and dynamic response of the switch are determined and discussed. Furthermore, the actuation
parameters (actuation amplitude and time) for the operation of the switch are investigated.

2 Basic equations

Let us consider an electrostatically actuated fixed–fixed microbeam, with length L , width b and thickness h,
as depicted in Fig. 1. A voltage drop V (t) is applied across the beam and an overlapping electrode underneath
it. A dielectric layer is fabricated on top of the electrode to avoid short circuit during oscillatory impact.

Assume u0(x, t) and w(x, t)are the displacements of the microbeam. According to the Euler–Bernoulli
assumptions, the nonlinear strain-displacement relation for the microbeam can be expressed as

εx = ε0 + zκ(x, t) = u0,x (x, t) + 1

2
w,x (x, t)2 − zw,xx (x, t),

χxy = −w,xx/2. (1)

And the constitutive relations are

σx = Eεx ,

mxy = 2l2µ0χxy (2)

where E is Young’s modulus, µ0 = E/2(1+ν) is Lame’s coefficient, and l is a material length scale parameter.
According to Hamilton’s principle, we have

δ

t2∫

t1

(T + W − U )dt = 0 (3)

0g

h
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+
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Fig. 1 Model of RF-MEMS capacitive switch. a Fixed–fixed MEMS beam; b sketch of the RF-MEMS switch past pull-in
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where T is the kinetic energy, W is the work done by the external force, and U is the strain energy. Based on
the modified couple stress theory [35], the variation of the strain energy can be written as

δU =
∫

Ω

(
σi jδεi j + mi jδχi j

)
dv =

∫

Ω

(
σxδεx + 2mxyδχxy

)
dv

=
∫

Ω

[
σxδ

(
u0,x + 1

2
w2

,x − zw,xx

)
+ 2mxyδ

(
−1

2
w,xx

)]
dv

=
L∫

0

[−N,xδu0 − (Nw,x ),xδw + M,xxδw + Y,xxδw
]

dx (4)

where the stress resultants are

N = b

h/2∫

−h/2

σx dz = b

h/2∫

−h/2

E

(
u0,x + 1

2
w2

,x − zw,xx

)
dz = E A

(
u0,x + 1

2
w2

,x

)
,

M = −b

h/2∫

−h/2

zσx dz = −b

h/2∫

−h/2

zE

(
u0,x + 1

2
w2

,x − zw,xx

)
dz = E Iw,xx ,

Y = −b

h/2∫

−h/2

mxydz = −b

h/2∫

−h/2

2l2µ0

(
−1

2
w,xx

)
dz = Al2µ0w,xx .

And I = bh3/12, A = bh are the respective second moments of area and area of the microbeam.
Similarly, the variation of work done by the external forces is

δW =
L∫

0

qδwdx (5)

where the force

q = Fe − Fv + Fva + Fc − Fcon (6)

and where Fe is the electrostatic force and is given by [41]

Fe = 1

2

εvbV 2

(g0 − w)2

(
1 + 0.65

(g0 − w)

b

)
(7)

with the first-order fringing field effect included. The absolute dielectric constant in vacuum is taken to be
εv = 8.8542 × 10−12F/m. Fv is the damping force caused by the squeezing membrane effect. In accordance
with Reynolds’ equation, it can be written as [42]

Fv = ν0b3

(g0 − w)3

∂w

∂t
(8)

where ν0 is the viscosity coefficient of air ν0 = 17.9 × 10−6. The Van der Waals force Fva according to [29]
is assumed to take the form

Fva = A12b

6π(g0 − w)3 (9)

where the Hamaker constant A12 = 4 × 10−20J. The Casimir force according to [29] is

Fc = π2h̄cb

240(g0 − w)4 (10)
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where the Planck constant h̄ = 6.625 × 10−34J s, and the speed of light c = 3 × 108m/s. Fcon is the contact
force. Using a nonlinear spring model to represent contact, we obtain [43]

Fcon = kcon(w − g0)
n(1 + µw,t )H(w − g0). (11)

If we neglect the contact nonlinearities, then n = 1 in the above expression. In Eq. (11), the Heaviside function
H(w − g0) ensures that the contact force is applied only at those locations where w ≥ g0, viz.,

H(w − g0) =
{

0, w < g0
1, w ≥ g0.

(12)

Furthermore, the variation of kinetic energy can be expressed as

t2∫

t1

δT dt =
t2∫

t1

⎛
⎝−ρ A

L∫

0

w,t tδwdx

⎞
⎠ dt. (13)

Substituting Eqs. (4)–(13) into Eq. (3), we obtain the following equilibrium equation for the microbeam:

(
E I + µ0 Al2) ∂4w

∂x4 + ρ A
∂2w

∂t2 + ν0b3

(g0 − w)3

∂w

∂t
=

⎡
⎣Pr + E A

2L

L∫

0

(
∂w

∂x

)2

dx

⎤
⎦ ∂2w

∂x2 + 1

2

εvbV 2

(g0 − w)2

×
[

1 + 0.65
(g0 − w)

b

]
+ A12b

6π(g0 − w)3 + π2h̄cb

240(g0 − w)4 − kcon(w − g0)
n
(

1 + µ
∂w

∂t

)
H(w − g0)

(14)

where Pr is the initial residual axial load caused by thermal mismatch and/or manufacturing. Introducing the
following dimensionless parameters:

ξ = x

L
, W = w

g0
, τ = t

T
, γ = l

h
, α1 = L4ν0b3

(E I + µ0 Al2)g3
0 T

, α2 = E Ag2
0

2(E I + µ0 Al2)
, P̄ = Pr L2

(E I + µ0 Al2)
,

α3 = L4εvbV 2
0

2(E I + µ0 Al2)g3
0

, T =
√

L4ρ A

(E I + µ0 Al2)
, α4 = L4kcongn−1

0

(E I + µ0 Al2)
, α5 = L4 A12b

6π(E I + µ0 Al2)g4
0

,

α6 = L4π2h̄cb

240(E I + µ0 Al2)g5
0

, β1 = 0.65
g0

b
, β2 = µg0

T
, V̄ = V

V0
(15)

where V0 is a unit voltage, the equilibrium equation (14) of the microbeam can be rewritten as

∂4W

∂ξ4 + ∂2W

∂τ 2 + α1
1

(1 − W )3

∂W

∂τ
=

⎡
⎣P̄+α2

1∫

0

(
∂W

∂ξ

)2

dξ

⎤
⎦ ∂2W

∂ξ2 + α3V̄ 2

(1 − W )2 [1 + β1(1 − W )]

−α4(W − 1)n
(

1 + β2
∂W

∂τ

)
H(W − 1) + α5

(1 − W )3 + α6

(1 − W )4 . (16)

Expanding the terms whose denominator has (1 − W ) in the above equation into a third-order Taylor series,
we get

∂4W

∂ξ4 + ∂2W

∂τ 2 + α1(1 + 3W + 6W 2)
∂W

∂τ
=

⎡
⎣P̄ + α2

1∫

0

(
∂W

∂ξ

)2

dξ

⎤
⎦ ∂2W

∂ξ2 + [(1 + β1) + (2 + β1)W

+(3 + β1)W 2 + (4 + β1)W 3] α3V̄ 2 − α4(W − 1)n
(

1 + β2
∂W

∂τ

)
H(W − 1)

+α5
(
1 + 3W + 6W 2 + 10W 3) + α6

(
1 + 4W + 10W 2 + 20W 3) . (17)
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The ratios of the coefficients of the electrostatic force α3V̄ 2, Van der Waals force α5 and Casimir force α6 are
εvV 2 : A12/(3πg0) : π2h̄c/(120g2

0), that is, 8.8542 × 10−12V 2: 4.24413 × 10−21/g0 : 1.63465 × 10−26/g2
0.

It means that only when the gap g0 is of the order of nanometers (10−9 m), the Van der Waals force and Casimir
force will be of comparable magnitude to the electrostatic force. For example, when the microbeam is pulled in
toward the dielectric layer, the gap between the switch and substrate is reduced, and as a result the Van der Waals
force and Casimir force between these two components will play a role in the effective response of the switch.

Let us now select a dimensionless boundary condition, such that

ξ = 0, 1 : W = ∂W

∂ξ
= 0. (18)

We use the Galerkin method to convert Eq. (17) into a system of nonlinear ordinary differential equations.
Therefore, we assume that the solution of Eq. (17) is of the following form:

W (ξ, τ ) =
N∑

j=1

φ j (ξ)η j (τ ) (19)

where η j (τ ) is a function of time and φ j (ξ) is the basis function of the Galerkin reduction. To ensure both
accuracy and efficiency, we carried out a number of tests and concluded that N = 5 is sufficient. Since both the
structure and the load are symmetrical, only symmetric shape functions are envisaged. Furthermore, we use
the undamped mode shapes of a fixed–fixed microbeam without axial extension as the basis function such that

φ j (ξ) = cosh(β jξ) − cos(β jξ) − cosh(β j ) − cos(β j )

sinh(β j ) − sin(β j )

[
sinh(β jξ) − sin(β jξ)

]
. (20)

The values of β j are obtained by solving the following characteristic equation:

cosh(β j ) cos(β j ) = 1. (21)

To simplify Galerkin’s integration scheme, the Heaviside function H(W − 1) is replaced by H(ξ − l1) −
H(ξ − l2), where l1 and l2 represent the ends of the contact length, as shown in Fig. 1b. In the case when there
is no contact, l1 = l2 = 0.5.

After substituting Eq. (19) into Eq. (17), we multiply the resulting equation by φk(ξ) and integrate over
the domain. Making use of the orthogonality of the mode shapes (

∫ 1
0 φ jφkdξ = δ jk), the following nonlinear

ordinary differential equations with the time-dependent function ηk(τ )(k = 1, 2, . . . , 5) are obtained:

η̈k + α1η̇k + 3α1

N∑
i, j=1

ηi η̇ j

1∫

0

φi φ j φkdξ + 6α1

N∑
i, j=1

η2
i η̇ j

1∫

0

φ2
i φ j φkdξ +

N∑
j=1

η j

1∫

0

φ′′′′
j φkdξ−P̄

N∑
j=1

η j

1∫

0

φ′′
j φkdξ

= α2

N∑
j,l,m=1

η j ηlηm

1∫

0

φ′
lφ

′
mdξ

1∫

0

φ′′
j φkdξ + α3V̄ 2

⎡
⎣(1 + β1)

1∫

0

φkdξ+(2 + β1)ηk + (3 + β1)

N∑
j=1

η2
j

1∫

0

φ2
j φkdξ

+(4 + β1)

N∑
j=1

η3
j

1∫

0

φ3
j φkdξ

⎤
⎦ − F̄con + (α5 + α6)

1∫

0

φkdξ + (3α5 + 4α6)ηk + (6α5 + 10α6)

N∑
j=1

η2
j

1∫

0

φ2
j φkdξ

+(10α5 + 20α6)

N∑
j=1

η3
j

1∫

0

φ3
j φkdξ (22)

with the dimensionless contact force given by

F̄con =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α4
∫ 1

0 φk [H(ξ − l1) − H(ξ − l2)]dξ − 3α4
∑N

j=1 η j
∫ 1

0 φ j φk [H(ξ − l1) − H(ξ − l2)]dξ

+3α4
∑N

j=1 η2
j

∫ 1
0 φ2

j φk [H(ξ − l1) − H(ξ − l2)] dξ − α4
∑N

j=1 η3
j

∫ 1
0 φ3

j φk [H(ξ − l1) − H(ξ − l2)] dξ

+α4β2
∑N

j=1 η̇ j
∫ 1

0 φ j φk [H(ξ − l1) − H(ξ − l2)]dξ − 3α4β2
∑N

i, j=1 ηi η̇ j
∫ 1

0 φi φ j φk [H(ξ − l1) − H(ξ − l2)]dξ

+3α4β2
∑N

i, j=1 η2
i η̇ j

∫ 1
0 φ2

i φ j φk [H(ξ−l1)−H(ξ−l2)] dξ−α4β2
∑N

i, j=1 η3
i η̇ j

∫ 1
0 φ3

i φ j φk [H(ξ−l1)−H(ξ−l2)] dξ(n =3)

α4
∫ 1

0 φk [H(ξ − l1) − H(ξ − l2)]dξ − α4
∑N

j=1 η j
∫ 1

0 φ j φk [H(ξ − l1)−H(ξ−l2)]dξ

+α4β2
∑N

j=1 η̇ j
∫ 1

0 φ j φk [H(ξ − l1) − H(ξ − l2)]dξ − α4β2
∑N

i, j=1 ηi η̇ j
∫ 1

0 φi φ j φk [H(ξ − l1) − H(ξ − l2)] dξ(n = 1).

(23)
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Noting that the first mode should be the dominant mode of the system, the modal expansion presented in Eq.
(19) can be approximated by a single term, when only the j = 1 term in Eq. (19) is considered and letting
n = 1, φ1(ξ) = φ(ξ), η1(τ ) = η(τ). Consequently, Eq. (22) becomes

η̈ + α1
(
a2 + 3a3η + 6a4η

2) η̇ + ω2η = α2a6a7η
3 + [(1 + β)a1 + (3 + β)a3η

2

+(4 + β)a4η
3]α3V̄ 2 − α4

[
a′

1 − a′
2η +β2

(
a′

2 − a′
3η

)
η̇
] + (α5 + α6) a1 + (3α5 + 4α6) a2η

+ (6α5 + 10α6) a3η
2 + (10α5 + 20α6) a4η

3 (24)

where ω2 = a0 − P̄a6 −α3(2+β1)a2V̄ 2 is the natural frequency of the microbeam in the absence of damping,
and

a0 =
1∫

0

φφ′′′′dξ, ai =
1∫

0

φi dξ, a′
i =

1∫

0

φi (
H

(
ξ − l1

) − H
(
ξ − l2

))
dξ(i = 1, 2, 3),

a6 =
1∫

0

φ′′φdξ, a7 =
1∫

0

(φ′)2dξ

where a2 = 1, “ ′” represents the derivatives with respect to coordinate ξ and “·” denotes the derivatives with
respect to the normalized time τ . Introducing the variables x1 = η, x2 = η̇, Eq. (24) can be rewritten in the
following first-order derivative form:

ẋ1 = x2,

ẋ2 = −α1
(
a2 + 3a3x1 + 6a4x2

1

)
x2 − ω2x1 + α2a6a7x3

1 + [
(1 + β)a1 + (3 + β)a3x2

1 + (4 + β)a4x3
1

]
α3V̄ 2

−α4
[
(a′

1 − a′
2x1) + β2

(
a′

2 − a′
3x1

)
x2

] + (α5 + α6) a1 + (3α5 + 4α6) a2x1

+ (6α5 + 10α6) a3x2
1 + (10α5 + 20α6) a4x3

1 . (25)

When the microbeam is simplified to a mass-spring system, its dynamic equation is in a similar form to that of
Eq. (25). The contact lengths l1 and l2 are determined iteratively at every load step by integrating the differential
equations provided in Eqs. (22) or (25) using Newmark’s integration scheme.

3 Numerical results and discussions

To demonstrate the validity and robustness of our model, let us select the following geometric parameters:
L = 210 µm, b = 100 µm, h = 1.5 µm and g0 = 1.18 µm, and the following material parameters:
E = 166 GPa, ν = 0.3, ρ = 2332 kg/m3, k(1)

con = 4.7 × 1011, k(3)
con = 4.7 × 1025 and μ = 0.8 for the

microbeam. The initial residual axial load is assumed to be Pr = 0.9 × 10−3 N, and the initial condition is
assumed to be ηk(0) = 0, η̇k(0) = 0.

3.1 Static analysis of the microbeam

First, we consider the microbeam under DC voltage. By ignoring the inertia and damping forces, Eq. (17) can
be degenerated to

∂4W

∂ξ4 =
⎡
⎣P̄+α2

1∫

0

(
∂W

∂ξ

)2

dξ

⎤
⎦ ∂2W

∂ξ2 + [
(1 + β1) + (2 + β1)W

+(3 + β1)W 2 + (4 + β1)W 3]α3V̄ 2 − α4(W − 1)n−1 H(W − 1)

+α5
(
1 + 3W + 6W 2 + 10W 3) + α6

(
1 + 4W + 10W 2 + 20W 3) . (26)
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After Galerkin’s first-order truncation, the above equation reduces to

(a0 − P̄a6)η = α2a6a7η
3 + α3V̄ 2 [

(1 + β1)a1 + (2 + β1)a2η + (3 + β1) a3η
2 + (4 + β1)a4η

3]
−α4

(
a1 − 3a2η + 3a3η

2 − a4η
3) H(φη − 1) + α5

(
a1 + 3a2η + 6a3η

2 + 10a4η
3)

+α6
(
a1 + 4a2η + 10a3η

2 + 20a4η
3) . (27)

In order to evaluate the accuracy of our model, we made a number of validation tests with earlier work by
other researchers. Let us consider the case prior to the pull-in. In this case, the contact force will not play a
role. Earlier work presented in reference [43] did not account for Van der Waals force, Casimir force and the
modified couple stress theory. Accordingly, Eq. (27) reduces to

V̄ (η) =
√

(a0 − P̄a6)η − α2a6a7η3[
(1 + β1)a1 + (2 + β1)a2η + (3 + β1)a3η2 + (4 + β1)a4η3

]
α3

. (28)

Hence, the pull-in voltage of the switch can be obtained by ensuring the instability condition dV̄ /dη = 0, i.e.,

d

dη

√
(a0 − P̄a6)η − α2a6a7η3[(

1 + β1
)
a1 + (

2 + β1
)
a2η + (

3 + β1
)
a3η2 + (

4 + β1
)
a4η3

]
α3

= 0. (29)

We obtain ηpi by solving Eq. (29), and substitute it into Eq. (28) to obtain the pull-in voltage V̄ (ηpi ). This
leads us to determine the normalized displacement amplitude ηpi = 0.391899. This value corresponds to a
normalized deflection W = 0.622393 and a corresponding pull-in voltage V̄ (ηpi ) = 29.9873, which agrees
well with the result of [43].

For the 1D effective MEMS model presented by [44], the pull-in voltage Vpi =
√

8Keff g3
0

27εA and deflection

w = g0/3 is determined from V = 2Keff
εA

(
g2

0w − 2g0w
2 + w3

)
. However, the midpoint deflection W =

0.622393 obtained from our model is larger than 1/3. This is because the initial residual tensile load and
geometric nonlinearity are considered in our model. The nonlinear terms lead to an increase in the stiffness of
the switch. Meanwhile, the electrostatic force is approximated by Taylor series, which is less than the actual
actuating load. In fact, we further simplify our model by ignoring the geometric nonlinearity, the residual
stresses and the fringe field effects of the electrostatic force by setting P̄ = α2 = β1 = 0, and Eq. (27) reduces
to

a0η = α3V̄ 2 (
a1 + 2a2η + 3a3η

2 + 4a4η
3) . (30)

Accordingly, the pull-in voltage can be determined by

V̄ (η) =
√

a0η

α3
(
a1 + 2a2η + 3a3η2 + 4a4η3

) ,
d

dη

√
a0η

α3
(
a1 + 2a2η + 3a3η2 + 4a4η3

) = 0. (31)

From Eq. (31), one can obtain ηpi = 0.310923 (Wpi = 0.493792) and pull-in voltage V̄ (ηpi ) = 25.9389. The
influence of the geometric nonlinearity, the residual stresses and the fringe field effects of the electrostatic force
on the stiffness of the microbeam is reflected in the reduction in the pull-in voltage from almost 30 to 26, which
represents 13.5 % reduction. It is clear from our work that the assumption of the one-dimensional mass-spring
model adopted in reference [44] underestimates the pull-in actuating voltage and the corresponding deflection.

In all the following figures, the coordinate label W0 denotes the normalized displacement of the midpoint
of the microbeam and V̄ denotes the normalized applied voltage. Figure 2 shows the variation of the deflection
of the microbeam with the increase in the actuating voltage. It can be observed from the figure that when
the deflection of microbeam center Wpi = 0.622393, the microbeam loses its stability and is pulled in. This
effectively means that the pull-in voltage of the switch is V̄pi = 29.9873. This agrees with the findings of
[43,45,46]. We further conducted a high-resolution three-dimensional finite element analysis using the com-
mercial code ANSYS under the same stipulated conditions. The microbeam is discretised into 3D 20-node
structural solid elements (Solid186), and the gap was modeled using 3D 20-node couple-field solid elements
(Solid226). The insert in Fig. 2 shows the discretised geometry of the microbeam and the electrostatic gap.
The FE results are superimposed on our analytical model prediction, denoted by the square symbols on that
figure, and they reveal excellent agreement.
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Fig. 2 Variation of microbeam normalized deflection against applied normalized voltage

Fig. 3 Effect of normalized gap g0/h on the normalized voltage–deflection V–W relationship

Figure 3 shows the change in the microbeam midpoint normalized deflection with the normalized actuation
voltage for different values of normalized electrostatic gap ḡ = g0/h. It can be observed that larger gaps lead
to slower midpoint deflection with the increase in normalized actuation voltage. This indicates the need for
larger pull-in voltage to compensate for the increase in the gap and the extended travel.

In all the previous validation tests, we used Galerkin first-order truncation. In the following, we will use
Galerkin fifth-order truncation [N = 5 in Eq. (19)]. This will allow us to more accurately study the effect of the
pertinent parameters upon the pull-in voltage and the resulting microbeam deflection as well as the associated
contact using Eq. (22), where ηk(k = 1, 2, . . . , 5) is independent of time.

Figure 4 shows the midpoint of the microbeam deflection with the increase in the DC voltage. The figure
shows that the normalized deflection of the microbeam increases with the increase in the actuating voltage.
The rate of increase accelerates until the pull-in occurs at V̄ = 30, which agrees well with the pull-in voltage
obtained from Eq. (29). The slight difference between these two values is due to the different orders of basis
functions used. Specifically, in Eq. (29), only the first-order shape function is included in the calculation, and
in Fig. 4 the first five orders are used in the calculation. The relation between the actuation voltage and the
midpoint deflection of the microbeam in the present study agrees well with the findings of [43]. The micro-
beam is pulled in and remains in contact with the substrate as the voltage increases beyond that pull-in voltage.
In this analysis, the contact stiffness kcon is chosen sufficiently high such that the maximum penetration of
the microbeam into the substrate is kept to a minimum (< 1 % of the microbeam thickness). From Fig. 4, it
can be observed that the linear and nonlinear contact forces provide comparable results with minor deviation
(0.013 %). In view of this, we used linear contact (n = 1) throughout the remainder of the study.

Figure 5 shows the variation of the normalized pull-in voltage and the material length scale parameter.
It can be observed that the increase in the characteristic length parameter results in a dramatic increase in
the pull-in voltage of the MEMS switch. Therefore, the modified couple stress theory should be employed in
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Fig. 4 Midpoint microbeam normalized deflection versus normalized actuating DC voltage

Fig. 5 Effect of characteristic length parameter on normalized pull-in voltage of the RF-MEMS switch

the design of MEMS devices in order to avoid underestimating the pull-in voltage of the device that could
ultimately lead to switch pull-in failure.

Examining Figs. 6 and 3 jointly, it can be seen that the normalized actuating voltage increases nonlinearly
with an increase in the normalized gap ḡ for the two types of end supports considered in this study. It can
be seen that for the same normalized gap the cantilever microbeam requires much lower pull-in voltage as
opposed to the fixed–fixed support. For example, for a normalized gap of 0.8, the cantilever microbeam requires
normalized pull-in voltage of 5, whereas the fixed–fixed microbeam requires 30; that is 6 times.

Figure 7 depicts the effect of microbeam geometry and initial residual axial load upon the normalized pull-
in voltage. It can be observed from the figure that the increase in the slenderness of the microbeam L̄ (L/h)
leads to a reduction in the pull-in voltage. This is expected because of its direct relationship to the stiffness of
the microbeam. The three curves in Fig. 7 represent the variation of the pull-in voltage with the initial residual
axial load. Comparing the three curves, it can be observed that the presence of a compressive residual load
leads to a reduction in the pull-in voltage as opposed to the stress-free beam or a beam containing tensile
residual axial load. This is because the resistance to the pull-in bending loads introduced by the compressive
axial load as opposed to the effect of tensile residual loads.

3.2 Dynamic analysis of the microbeam

In this section, we study the dynamic behavior of the microswitch by including the effects of the inertia forces
and damping force [as shown in Eq. (22)]. If we neglect damping, α1 = 0, β2 = 0, then the normalized
dynamic pull-in voltage is reduced to 28.58 as depicted in Fig. 8a. This is due to the kinetic energy of the
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Fig. 6 Effect of normalized electrostatic gap and boundary conditions on normalized pull-in voltage of the RF-MEMS switch

Fig. 7 Effect of microbeam geometry and initial residual load on normalized pull-in voltage of the RF-MEMS switch

(a) (b)

Fig. 8 Dynamic pull-in of the RF-MEMS switch. a without damping; b with damping

system. If we now consider the squeeze membrane damping with α1 = 3 and assuming a contact damping
parameter β2 = 0.001, the dynamic pull-in voltage increases to 29.8, which is comparable to the static pull-in
voltage. This is because the kinetic energy of the system decays rapidly due to damping, and dynamic effects
are thus diminished. Comparing Fig. 8a and b, it can be observed that, as expected, damping increases the
normalized dynamic pull-in voltage of MEMS switches. Unlike Fig. 8a, the insert in Fig. 8b shows the dramatic
damping of the oscillatory bouncing following the pull-in.

The long-term reliability of MEMS switches is a major concern for RF and microwave applications. The
dynamics of the switch is related to its reliability and performance. This is because the impact force and
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Fig. 9 Assumed waveform of input voltage

Fig. 10 Closure and opening of the RF-MEMS switch. a Deflection response of the midpoint of the microbeam; b velocity
response of the midpoint of the microbeam

bounce of the switch during contact may lead to the deterioration of the contact interfaces [1,17,18,23,44].
Stiction is another challenge to the commercial deployment of RF-MEMS switches. In this case, when the
actuation signal is removed, the switch fails to recover its original position due to the surface forces (such
as Van der Waals force and Casimir force) between the switch and the substrate. Thus, the desired switch is
characterized by minimal close time with a soft landing during closure and without stiction during opening.
In this section, we assess the reliability and study the closure and opening process of the switch to examine its
contact bouncing and stiction characteristics. We simulate the time history of a shunt switch subjected to the
voltage shown in Fig. 9, as follows:

V̄ (τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̄a
tr

τ 0 ≤ τ < t1

V̄a t1 ≤ τ < t2
− V̄a

tr
(τ − t3) t2 ≤ τ < t3

0 t3 ≤ τ

(32)

where tr is the rise time, ta is the actuation time, t1 = tr , t2 = t1 + ta , and at t3 = t2 + tr the voltage is
removed. In this paper, the rise time is defined as the time taken by the microbeam to transition from zero to
peak voltage. The fall time, which is defined as the time to ramp down from peak to zero volts, is chosen to be
equal to the rise time. A rise time of 0 represents a step. The shapes of the rise and fall are discussed in [44].
Here, we use the linear ramps depicted in Fig. 9.

From Fig. 10, it can be observed that the switch begins from a flat position ‘a’ representing ON-state and
settles down to Off-state at ‘b’ and returns back to the flat position after release to the open switch state at ‘c’. It
can be noticed that there is no contact bouncing during the closure, which demonstrates a superior performance
to series switches [18,47]. Moreover, after the actuation voltage is removed, the microbeam loses contact with
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the dielectric layer and experiences no stiction in spite of the presence of the Van der Waals force and Casimir
force.

Let us now consider the case when the actuation voltage is less than the dynamic pull-in voltage.
Figure 10a shows that the switch cannot be pulled down in the case where V̄a = 29 and W0 = 0.4 (not
unity). When the actuation voltage is larger than the dynamic pull-in voltage (e.g., the case where V̄a = 31),
the switch closes much faster. Figure 10b shows the effect of the pull-in voltage upon the response of the micro-
beam. It reveals that higher actuating voltage can lead to higher impact loads as a result of the introduction of
high contact speeds.

The effect of normalized damping coefficients upon the response of the microbeam is presented in Fig. 11.
As expected, larger normalized damping leads to slower response in terms of the microbeam’s deflection and
velocity. It is worth noting that the overdamped case leads to excessive closure time. The undamped case will
lead to excessive bouncing, as seen in Fig. 11.

Figure 12 depicts the response of the microbeam with different rise and actuating times. It can be observed
that when the rise and the fall times are relatively long, the vibration amplitude of the microbeam is reduced
and there is less capacitive vibration when the actuating voltage is removed. On the other side, it takes relatively
longer time to close the switch.

Fig. 11 Effect of damping on the dynamic response of the midpoint of the microbeam (tr = 1, ta = 4, and β2 = 0.01)
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Fig. 12 Effect of different rise and fall times on the dynamic response of the midpoint of the microbeam (α1 = 3 and β2 = 0.01)
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4 Conclusions

In this paper, a unified and comprehensive analytical model is developed to simulate the complete static and
dynamic responses of microactuators during free flight, impact and contact with the dielectric layer. The model
incorporates the couple stress theory to introduce an intrinsic length scale as a state variable and examines its
effect on the response RF-MEMS switches. The model further considers nonlinear contact force, Van der Waals
force, Casimir force and squeeze-film damping effects upon the actuating voltage pull-in and the response of
the microbeam switch. Two support types (Cantilever and fixed–fixed supports) are examined, and the effects
of the presence of initial residual loading, electrostatic gap and the geometry of the microbeam on the pull-in
and post pull-in voltages are evaluated and discussed. The work was further extended to account for inertial
stiffening and dynamic bouncing. Our findings reveal that the developed model can be adapted for the design
of RF-MEMS switches.
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